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Abstract 
This document provides a comprehensive guide to a generalized mathematical 
framework for simulating two phenotypes, 𝑃! and 𝑃", that may be linked by causality, 
confounding, and pleiotropy. The model’s core innovation is a flexible and 
biologically principled representation of pleiotropy, where a subset of single-
nucleotide polymorphisms (SNPs) influencing 𝑃! also exert a direct effect on 𝑃". 
These pleiotropic effects are modeled as random variables at the per-SNP level. The 
mean of the effect size distribution captures systematic, directional pleiotropy, 
while its variance captures random, heterogeneous pleiotropy. 

This guide serves a dual purpose. For researchers, it offers a clear explanation of 
the principles behind the data generation process, enabling a deeper understanding 
of the simulated data’s structure. For developers, it provides a precise, step-by-
step algorithm for implementation, complete with robust handling of all logical edge 
cases, such as the absence of pleiotropy (𝑞 = 0) and the absence of a causal 
pathway (𝛼 = 0). By detailing all assumptions, derivations, and calculations, this 
document aims to be a definitive resource for creating sophisticated and realistic 
phenotype simulations. 

Introduction: The Need for Principled Simulation 
In quantitative genetics and epidemiology, simulation is an indispensable tool. A 
robust simulation framework must be able to generate data that mirrors the 
complexities of biological reality, including causal relationships, confounding, and 
the multifaceted nature of pleiotropy. This document describes such a framework, 
providing a blueprint for generating two phenotypes, 𝑃! and 𝑃". Our goal is to 
provide a guide that is both conceptually clear for researchers and technically 
precise for software developers. 



The Simulation Model 
Conceptual Overview 
The model defines the relationships between five core entities: two genetic factors 
(𝐺!, 𝐺"), a common confounder (𝐶), and two phenotypes (𝑃!, 𝑃"). The key 
relationships are: 

• Genetic Basis: 𝐺! influences 𝑃!, and 𝐺" influences 𝑃". 

• Causality: 𝑃! may have a direct causal effect on 𝑃". 

• Confounding: A shared factor 𝐶 may influence both 𝑃! and 𝑃". 

• Pleiotropy: A subset of the genetic variants composing 𝐺! may also have a 
direct effect on 𝑃", independent of the causal path through 𝑃!. 

The Structural Equations 
These relationships are formalized by the following linear equations: 

𝑃! = 𝐺! + 𝑐!𝐶 + 𝐸!
𝑃" = 𝛼𝑃! + 𝐺pleio + 𝛽𝐺" + 𝑐"𝐶 + 𝐸"

 

where 𝐺! is composed of pleiotropic and non-pleiotropic SNPs, and 𝐺pleio 
represents the direct genetic effect on 𝑃" from the pleiotropic SNPs. 

Detailed Component Definitions 
• 𝑃!, 𝑃": The final observable phenotypic values. 

• 𝐺!, 𝐺": The aggregate genetic scores, which are mean-centered. For a set of 
𝑚 causal SNPs, a genetic score is constructed as 𝐺 = ∑ (#

$%! 𝑋$ − 2𝑝$)𝛽$, 
where 𝑋$  is the genotype (coded 0, 1, 2), 𝑝$  is the effect allele frequency, and 
𝛽$  is the per-allele effect size. 

• Simplification Assumption: For clarity, we assume each causal SNP for 𝑃! 
has a uniform effect size, 𝛽!,$ = 1. Therefore, the genetic score is 𝐺! =
∑ (#!
$%! 𝑋$ − 2𝑝$). This centering ensures 𝐸[𝐺!] = 0, a critical assumption for 

variance derivations. The variance is Var(𝐺!) = ∑ 2#!
$%! 𝑝$(1 − 𝑝$). 

• 𝐺pleio: The pleiotropic genetic score for 𝑃". It is constructed from the subset 
of 𝑚pleio SNPs that are also in 𝐺!. For each such pleiotropic SNP 𝑗, its effect 
on 𝑃" is a random variable 𝛾'. Thus, 𝐺pleio = ∑ (#pleio

'%! 𝑋' − 2𝑝')𝛾'. 



• 𝛾': The per-SNP pleiotropic effect on 𝑃", modeled as a random variable for 
each pleiotropic SNP 𝑗: 𝛾' ∼ 𝒩(𝜇( , 𝜎("). These effects are drawn once and 
are then fixed for all individuals. 

• 𝐶: A common confounder, standardized with 𝐸[𝐶] = 0 and Var(𝐶) = 1. 

• 𝐸!, 𝐸": Independent, phenotype-specific residual effects, with 𝐸[𝐸!] =
𝐸[𝐸"] = 0. 

• 𝛼, 𝛽, 𝑐!, 𝑐": Fixed coefficients defining the architecture. 

• 𝑞: The proportion of SNPs in 𝐺! that are pleiotropic. 𝑚pleio = 𝑞 ⋅ 𝑚!. 

All base components are assumed to be mutually independent, except for the 
shared genetic variants underlying 𝐺! and 𝐺pleio. 

Derivation of Variance Components 
The derivation of variance relies on the independence and mean-zero property of 
the base components. The variance of 𝑃! is: 

Var(𝑃!) = Var(𝐺!) + 𝑐!" + Var(𝐸!) 

To derive the variance of 𝑃", we first substitute 𝑃! into the equation for 𝑃": 

𝑃" = 𝛼(𝐺! + 𝑐!𝐶 + 𝐸!) + 𝐺pleio + 𝛽𝐺" + 𝑐"𝐶 + 𝐸" 

Let 𝐺! be the sum of its non-pleiotropic (𝐺!,)*) and pleiotropic (𝐺!,*) parts. The 
genetic components influencing 𝑃" are 𝛼𝐺!, 𝐺pleio, and 𝛽𝐺". The total genetic 
variance in 𝑃" is Var(𝛼𝐺!,)* + (𝛼𝐺!,* + 𝐺pleio) + 𝛽𝐺"). Through derivation (see 
Appendix), this simplifies elegantly. The full variance equation for 𝑃" is: 

Var(𝑃") = ?𝛼"(1 − 𝑞) + ((𝛼 + 𝜇()" + 𝜎(")𝑞@Var(𝐺!) + 𝛽"Var(𝐺")
+(𝛼𝑐! + 𝑐")" + 𝛼"Var(𝐸!) + Var(𝐸")

 

A Step-by-Step Guide to Parameter Calculation 
This section provides a complete algorithm for calculating all unknown model 
coefficients from a set of intuitive, user-defined parameters. 

User-Specified Parameters 
• Var(𝐺!),Var(𝐺"): Base genetic variances, calculated from the number of 

causal SNPs and their allele frequencies. 

• 𝛼: The causal effect coefficient. A value of 0 indicates no causal path. 



• 𝑞: The proportion of causal SNPs for 𝑃! that are pleiotropic. 

• ℎ!", 𝑣+,!" : Heritability and confounder variance proportion for 𝑃!. 

• ℎ"", 𝑣+,"" : Heritability and confounder variance proportion for 𝑃". 

• ℎpleio-dir" , ℎpleio-rand" : Variance proportions for directional and random 
pleiotropy, respectively. These represent the proportion of Var(𝑃") explained 
by the mean-centered and variance components of the pleiotropic effects. 
Must be 0 if 𝑞 = 0. 

• Conditional Parameter for Causal Path: 

o Only required if 𝛼 ≠ 0: 𝑣,!→,"
" , the proportion of variance in 𝑃" 

explained by the causal path from 𝑃!. 

The Calculation Algorithm 
Step 1: Calculate Parameters for Phenotype 𝑃! 

Purpose: To fully define the scale and composition of 𝑃!, which may act as a causal 
source of variance for 𝑃". 

1. Total variance of 𝑃!: Var(𝑃!) = Var(𝐺!)/ℎ!". 

2. Confounder scaling coefficient: 𝑐! = E𝑣+,!" ⋅ Var(𝑃!). 

3. Residual variance: Var(𝐸!) = Var(𝑃!)(1 − ℎ!" − 𝑣+,!" ). 

Step 2: Determine the Scale and Parameters of Phenotype 𝑃" 

Purpose: To establish the absolute variance of 𝑃" and solve for its genetic 
parameters. The logic branches based on the presence of a causal path. 

Case 1: Causal Path Exists (𝛼 ≠ 0) 

Principle: The causal effect from the now-defined 𝑃! provides a natural, data-driven 
anchor to determine the total variance of 𝑃". 

1. Calculate Total Variance of 𝑃": 

Var(𝑃") =
𝛼"Var(𝑃!)
𝑣,!→,"
"  

2. Calculate Pleiotropic Parameters (𝜇( , 𝜎("): If 𝑞 > 0, solve using the known 
Var(𝑃"). The variance from directional pleiotropy is 𝜇(" ⋅ 𝑞 ⋅ Var(𝐺!), and from 
random pleiotropy is 𝜎(" ⋅ 𝑞 ⋅ Var(𝐺!). 



𝜇(" =
ℎpleio-dir" ⋅ Var(𝑃")
𝑞 ⋅ Var(𝐺!)

, 𝜎(" =
ℎpleio-rand" ⋅ Var(𝑃")

𝑞 ⋅ Var(𝐺!)
 

  (Note: We solve for 𝜇("; its sign is arbitrary and can be set to positive by 
convention.) If 𝑞 = 0, then 𝜇( = 0, 𝜎(" = 0. 

3. Calculate Genetic Scaling Coefficient 𝛽: The total genetic variance in 𝑃" is 
Varg(𝑃") = ℎ"" ⋅ Var(𝑃"). We solve for 𝛽": 

𝛽" =
Varg(𝑃") − ?𝛼"(1 − 𝑞) + ((𝛼 + 𝜇()" + 𝜎(")𝑞@Var(𝐺!)

Var(𝐺")
 

Case 2: No Causal Path (𝛼 = 0) 

Principle: With no causal anchor, the scale of 𝑃" is indeterminate from proportions 
alone. We establish the scale by creating a direct, standardized link to its own 
unique genetic basis. By convention, we set 𝛽 = 1. 

1. Set the Genetic Scaling Coefficient 𝛽: 𝛽 = 1. 

2. Derive Total Variance of 𝑃": The absolute variance from 𝐺" is Var(𝛽𝐺") =
Var(𝐺"). The proportional variance from 𝐺" is the total heritability minus the 
pleiotropic contributions: ℎ."→,"

" = ℎ"" − (ℎpleio-dir" + ℎpleio-rand" ). Equating 
these gives: 

ℎ."→,"
" =

Var(𝛽𝐺")
Var(𝑃")

⟹ Var(𝑃") =
Var(𝐺")

ℎ"" − ℎpleio-dir" − ℎpleio-rand"  

  This result elegantly determines the total variance of 𝑃" from the input 
proportions and the variance of its own genetic component. 

3. Calculate Pleiotropic Parameters (𝜇( , 𝜎("): Now that Var(𝑃") is known, we 
calculate the pleiotropic parameters as in the causal case (with 𝛼 = 0). 

Step 3: Calculate Remaining Parameters for 𝑃" (Common to both cases) 

Purpose: To solve for the final non-genetic coefficients now that the scale of 𝑃" is 
fully determined. 

1. Confounder Scaling Coefficient 𝑐": The confounder variance in 𝑃" is (𝛼𝑐! +
𝑐")" = 𝑣+,"" ⋅ Var(𝑃"). 

𝑐" = E𝑣+,"" ⋅ Var(𝑃") − 𝛼𝑐! 

  (Note: If 𝛼 = 0, this simplifies to 𝑐" = E𝑣+,"" ⋅ Var(𝑃")). 



2. Residual Variance Var(𝐸"): This term accounts for all remaining variance. 

Var(𝐸") = Var(𝑃")(1 − ℎ"" − 𝑣+,"" ) − 𝛼"Var(𝐸!) 

  (Note: If 𝛼 = 0, this simplifies to Var(𝐸") = Var(𝑃")(1 − ℎ"" − 𝑣+,"" )). 

Simulation and Interpretation 
Once all model parameters have been calculated, phenotypes can be simulated for 
a population of individuals. The crucial step for pleiotropy is: 

1. Before the simulation loop: For each of the 𝑚pleio pleiotropic SNPs, draw a 
single effect size 𝛾'  from the distribution 𝒩(𝜇( , 𝜎("). These values are now 
fixed constants for the duration of the simulation. 

2. For each individual: Calculate 𝑃! and 𝑃" using the structural equations. The 
pleiotropic term 𝐺pleio is calculated as the sum of the individual’s genotypes 
at the pleiotropic loci, weighted by their corresponding fixed 𝛾'  values. 

This generalized framework elegantly captures simpler models as special cases: 

• Fixed Correlated Pleiotropy: Achieved by setting ℎpleio-rand" = 0. This forces 
𝜎(" = 0, making each 𝛾'  a constant equal to 𝜇(. 

• Random Uncorrelated Pleiotropy: Achieved by setting ℎpleio-dir" = 0. This 
forces 𝜇( = 0, and each 𝛾'  is drawn from a zero-mean distribution. 

• Mixed-Effect Pleiotropy: Setting both ℎpleio-dir" > 0 and ℎpleio-rand" > 0 models 
a scenario with both a systematic directional effect and random 
heterogeneity around it. 

Conclusion: A Blueprint for Principled Simulation 
This document has laid out a comprehensive and robust framework for phenotypic 
simulation. By providing a clear distinction between user-defined intuitive 
parameters and the derived model coefficients, it enables the creation of complex 
datasets where the underlying ground truth is precisely known. The biologically 
principled, per-SNP model of pleiotropy and the careful handling of different causal 
scenarios make it a powerful tool for methodological development and for teaching 
the core principles of quantitative genetics. Adherence to the steps outlined here 
will ensure that simulated data is not only complex and realistic but also internally 
consistent and reproducible. 


